46 research outputs found

    Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation

    Get PDF
    Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability

    Characterisation and outcomes of patients referred to a regional cancer of unknown primary team: a 10-year analysis

    Get PDF
    BACKGROUND: In the United Kingdom, national guidance published in 2010 recommended the establishment of specialist teams to improve clinical pathways for patients presenting with malignancies of undefined primary origin (MUO) and cancer of unknown primary (CUP). This study sought to define outcomes of patients referred to a regional MUO/CUP service. METHODS: Data were collected prospectively on all patients (n = 1225) referred to a regional CUP team over a 10-year period. Patient demographics, clinical, pathological and outcome data were recorded and analysed. RESULTS: Confirmed CUP (cCUP) was diagnosed in 25% of patients. A primary metastatic cancer was identified in 36%, 5% were diagnosed with provisional CUP (pCUP), 27% retained the diagnosis of MUO and in 8% a non-cancer diagnosis was made. Median survival was low in all patients with a final malignant diagnosis: primary identified 9.0 months, cCUP 4.0 months, pCUP 1.5 months and MUO 1.5 months. CONCLUSIONS: Patients presenting with MUO have poor outcomes irrespective of the final diagnosis. These patients need a patient-centred, streamlined, rapid diagnostic pathway. There are clear benefits to primary and secondary care teams having access to a dedicated, multidisciplinary MUO/CUP service, with clinical nurse specialists supporting the patients, to help facilitate this pathway and ensure early oncology review

    Initial active surveillance for patients with metastatic renal cell carcinoma: 10 years' experience at a regional cancer Centre

    Get PDF
    Abstract A subset of patients with metastatic renal cell carcinoma (mRCC) follow an indolent disease course and may benefit from initial active surveillance (AS). However, selecting patients suitable for this approach is challenging. To investigate this we sought to define outcomes of patients with mRCC suitable for initial AS. All patients with mRCC clinically selected for initial AS at the Edinburgh Cancer Centre between January 2010 and December 2020 were identified. Key inflammatory biomarkers (haemoglobin, white cell count, neutrophil count, platelets, C‐reactive protein [CRP], albumin, corrected calcium) and the International Metastatic RCC Database Consortium (IMDC) risk score were measured. The relationship between these and time to systemic anticancer therapy (tSACT) and overall survival (OS) was analysed. Data were available for 160 patients. Estimated median overall survival was 88.0 (interquartile range [IQR] 34.0–127.0) months. Median tSACT was 31.8 (IQR 12.0–76.3) months. On multivariate analysis, only CRP was predictive of tSACT (HR 2.47 [95% CI:1.59–3.85] p  10 mg/L were more likely to commence SACT within 1 year than those with CRP≀10 mg/L (41% vs. 18%, Relative Risk 2.16 (95% CI:1.18–3.96) (p = 0.012)). IMDC risk score was not predictive of tSACT or OS. Active surveillance is an appropriate initial management option for selected patients with mRCC. CRP, a biomarker of systemic inflammation, may provide additional objective information to assist clinical decision‐making in patients with mRCC being considered for initial AS. Although this is a retrospective observational study, the cohort is well defined and includes all patients managed with initial AS in an inclusive real‐world setting

    Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth

    Get PDF
    Immediately after birth, newborn babies experience rapid colonization by microorganisms from their mothers and the surrounding environment1. Diseases in childhood and later in life are potentially mediated by the perturbation of the colonization of the infant gut microbiota2. However, the effects of delivery via caesarean section on the earliest stages of the acquisition and development of the gut microbiota, during the neonatal period (≀1 month), remain controversial3,4. Here we report the disrupted transmission of maternal Bacteroides strains, and high-level colonization by opportunistic pathogens associated with the hospital environment (including Enterococcus, Enterobacter and Klebsiella species), in babies delivered by caesarean section. These effects were also seen, to a lesser extent, in vaginally delivered babies whose mothers underwent antibiotic prophylaxis and in babies who were not breastfed during the neonatal period. We applied longitudinal sampling and whole-genome shotgun metagenomic analysis to 1,679 gut microbiota samples (taken at several time points during the neonatal period, and in infancy) from 596 full-term babies born in UK hospitals; for a subset of these babies, we collected additional matched samples from mothers (175 mothers paired with 178 babies). This analysis demonstrates that the mode of delivery is a significant factor that affects the composition of the gut microbiota throughout the neonatal period, and into infancy. Matched large-scale culturing and whole-genome sequencing of over 800 bacterial strains from these babies identified virulence factors and clinically relevant antimicrobial resistance in opportunistic pathogens that may predispose individuals to opportunistic infections. Our findings highlight the critical role of the local environment in establishing the gut microbiota in very early life, and identify colonization with antimicrobial-resistance-containing opportunistic pathogens as a previously underappreciated risk factor in hospital births

    The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping.

    Get PDF
    Funder: Royal SocietyHuman health and disease have increasingly been shown to be impacted by the gut microbiota, and mouse models are essential for investigating these effects. However, the compositions of human and mouse gut microbiotas are distinct, limiting translation of microbiota research between these hosts. To address this, we constructed the Mouse Gastrointestinal Bacteria Catalogue (MGBC), a repository of 26,640 high-quality mouse microbiota-derived bacterial genomes. This catalog enables species-level analyses for mapping functions of interest and identifying functionally equivalent taxa between the microbiotas of humans and mice. We have complemented this with a publicly deposited collection of 223 bacterial isolates, including 62 previously uncultured species, to facilitate experimental investigation of individual commensal bacteria functions in vitro and in vivo. Together, these resources provide the ability to identify and test functionally equivalent members of the host-specific gut microbiotas of humans and mice and support the informed use of mouse models in human microbiota research.Sir Henry Dale Fellowship jointly funded by Wellcome Trust and Royal Society [206245/Z/17/Z]. Rosetrees Trust [A2194]. Wellcome Trust [098051]

    A human gut bacterial genome and culture collection for improved metagenomic analyses

    Get PDF
    Understanding gut microbiome functions requires cultivated bacteria for experimental validation and reference bacterial genome sequences to interpret metagenome datasets and guide functional analyses. We present the Human Gastrointestinal Bacteria Culture Collection (HBC), a comprehensive set of 737 whole-genome-sequenced bacterial isolates, representing 273 species (105 novel species) from 31 families found in the human gastrointestinal microbiota. The HBC increases the number of bacterial genomes derived from human gastrointestinal microbiota by 37%. The resulting global Human Gastrointestinal Bacteria Genome Collection (HGG) classifies 83% of genera by abundance across 13,490 shotgun-sequenced metagenomic samples, improves taxonomic classification by 61% compared to the Human Microbiome Project (HMP) genome collection and achieves subspecies-level classification for almost 50% of sequences. The improved resource of gastrointestinal bacterial reference sequences circumvents dependence on de novo assembly of metagenomes and enables accurate and cost-effective shotgun metagenomic analyses of human gastrointestinal microbiota
    corecore